Moduli of distributions via singular schemes
نویسندگان
چکیده
Let $X$ be a smooth projective variety. We show that the map sends codimension one distribution on to its singular scheme is morphism from moduli space of distributions into Hilbert scheme. describe fibers and, when $X = \mathbb{P}^n$, compute them via syzygies. As an application, we spaces degree 1 $\mathbb{P}^3$. also give minimal graded free resolution for ideal generic
منابع مشابه
Counting Singular Plane Curves via Hilbert Schemes
Consider the following question. Given a suitable linear series L on a smooth surface S, how many curves in L have a given analytic or topological type of singularity? By “suitable” linear series with respect to a type of singularity, we mean that there are finitely many curves with the singularity in the linear series and their codimension is maximal. Our approach to this question is to expres...
متن کاملTraces of Singular Moduli
Introduction. “Singular moduli” is the classical name for the values assumed by the modular invariant j(τ) (or by other modular functions) when the argument is a quadratic irrationality. These values are algebraic numbers and have been studied intensively since the time of Kronecker and Weber. In [5], formulas for their norms, and for the norms of their differences, were obtained. Here we obtai...
متن کاملSingular Moduli Refined
In this paper, we give a refinement of the work of Gross and Zagier on singular moduli. Let K1 and K2 be two imaginary quadratic fields with relatively prime discriminants d1 and d2, and let F = Q( √ d1d2). Hecke constructed a Hilbert modular Eisenstein series over F of weight 1 whose functional equation forces it to vanish at s = 0. For CM elliptic curves E1 and E2 with complex multiplication ...
متن کاملApproximating the Distributions of Singular Quadratic Expressions and their Ratios
Noncentral indefinite quadratic expressions in possibly non- singular normal vectors are represented in terms of the difference of two positive definite quadratic forms and an independently distributed linear combination of standard normal random variables. This result also ap- plies to quadratic forms in singular normal vectors for which no general representation is currently available. The ...
متن کاملSingular Moduli of Shimura Curves
The j-function acts as a parametrization of the classical modular curve. Its values at complex multiplication (CM) points are called singular moduli and are algebraic integers. A Shimura curve is a generalization of the modular curve and, if the Shimura curve has genus 0, a rational parameterizing function exists and when evaluated at a CM point is again algebraic over Q. This paper shows that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Zeitschrift
سال: 2022
ISSN: ['1432-1823', '0025-5874']
DOI: https://doi.org/10.1007/s00209-022-03001-y